

## **Purdue Spring 2021 Conference**

# Predicting the fire and explosion properties of early phase active pharmaceutical ingredients

Antony Janes, Process Safety Engineering Director, GSK R&D

#### What issues did this work set out to solve?



- Early phase pharmaceutical manufacture often occurs in the absence of powder fire and explosion test data.
  - Catch 22 we have to make the powder to go away for testing to tell us what we needed to know to safely make the powder.
  - Competing priorities with very little material in existence the patient need is often prioritised over sending material for testing.
- Yet...
- A process safety incident at 1-10kg scale can cause serious injury or death.
- Some pieces of equipment have restrictions on MIE, Pmax/Kst or MIT/LIT making it very hard to use the equipment when the parameters are unknown.
- Mitigating the lack of knowledge can involve complex precautions making the process difficult for people to operate.

## Testing Is Always Best If Material Is Available

## **Our target**



- A methodology to predict powder fire and explosion properties:
  - Highlight 'materials of concern':
    - MIE <5mJ</p>
    - Pmax > 10bar(a)
    - ST3 (Kst > 300 bar.m/s)
    - MIT/LIT into the T4, T5, T6 region
- Success Criteria:
  - Use <1g of material.</li>
  - Not require any additional equipment.
  - 'False positives' < 33% of the time.</li>
  - 'False negatives' < 3% of the time.</li>

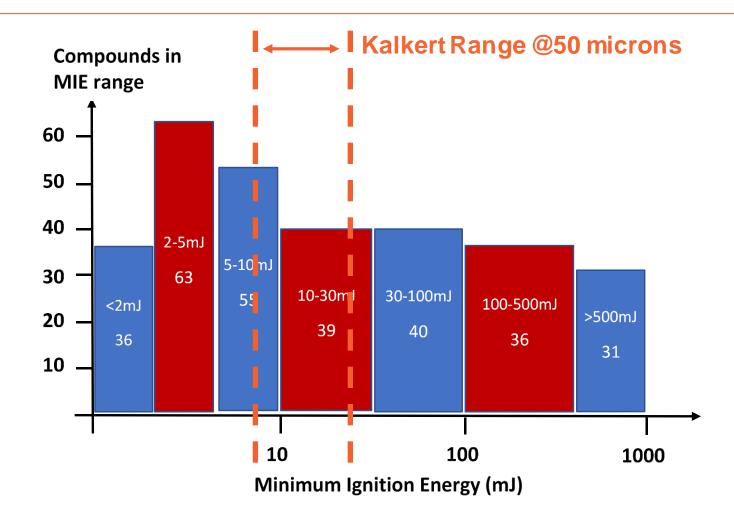


# Minimum Ignition Energy

#### **Literature Model**



The Kalkert (1979) equation predicts the MIE (in Joules) of powder particle.

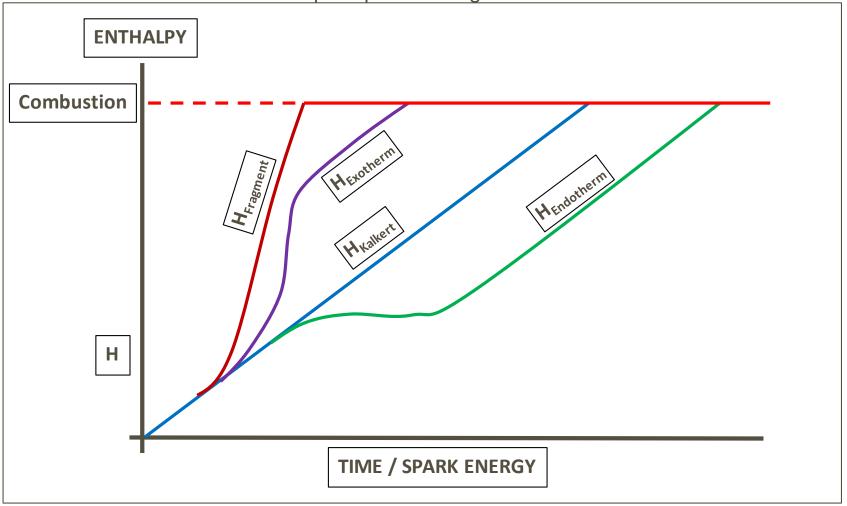

MIE = 
$$(4\pi\chi)^{3/2} \rho_g.Cp_g \left[ \begin{array}{cc} Ln.2 & \rho_s.Cp_s \\ 12 & k_g \end{array} \right]^{3/2} T_{max}.D_p^3$$

- Where:
- $\rho_q$  = Gas (air) density in kg/m3
- Cp<sub>g</sub> = Gas (air) specific heat in J/kg.K
- K<sub>g</sub> = Gas (air) thermal conductivity in W/m.K
- $\chi = K_g/(\rho_g.Cp_g)$
- $\rho_s$  = Powder density in kg/m3
- Cp<sub>s</sub> = Powder specific heat in J/kg.K
- $T_{max}$  = The air temperature around the particle. As per Kalkert (1979) taken as 1300K
- D<sub>p</sub> = Particle diameter (d<sub>50</sub>) in m
- It can be solved for typical powder density and specific heat (at 50 micron particle size) with an allowance for spark generation inefficiency to give a prediction of circa 9 -26mJ.

N. Kalkert, H.-G. Schecker; Theoretische ueberlegungen zum einfluss der teichengroesse auf die mindestzuendenergie von staeuben (Theoretische ueberlegungen zum einfluence of particle size on the minimum energy of ignition): Chemie Ingenieur Technik.51 (1979), pp.1248-1249

#### Kalkert Model versus GSK API Test Data






#### **Understanding the Model versus Reality Gap**

## **Thermodynamics**



Kalkert model is based on simple Cp.dT heating



## **Model Currently Used...**

#### ...How it will develop further



MIE = 2 x MIE<sub>Kalkert</sub> 
$$\left[\frac{200}{100 + \Sigma F.\Delta H_{DSC}}\right]$$
 Inter Molecular Stability Molecular Stability

- '2' represents greater understanding of spark energy efficiency since Kalkert model developed.
- 'F' factor covering the shape of the DSC exotherm(s) and peak temperature.
- $-\Delta H_{DSC}$  the size in J/g of DSC exotherm(s).
- Inter Molecular Stability represents the strength of the crystal lattice and is based on the melt temperature and melt endotherm (from DSC).
- Molecular Stability represents the structural integrity (or not) of the molecule and is based on:
  - Bond energies
  - Chemistry knowledge
  - Thermogravimetric analysis (TGA) to assess cleavage pathways
- Future factor to represent particle shape and agglomeration/flow properties.

## **Examples of the factors**

#### All empirically derived – and subject to change



|                    | Value of 'F' Temperature at Exotherm Peak |                      |         |  |  |
|--------------------|-------------------------------------------|----------------------|---------|--|--|
| Exotherm Shape     |                                           |                      |         |  |  |
|                    | < 200°C                                   | 200°C to 300°C       | > 300°C |  |  |
| Sharp peak         | 1.5                                       | Linear interpolation | 0.5     |  |  |
| Sharp bell curve   | 1.25                                      | Linear interpolation | 0.35    |  |  |
| Classic bell curve | 1                                         | Linear interpolation | 0.25    |  |  |
| Shallow bell curve | 0.75                                      | Linear interpolation | 0.1     |  |  |
| Shallow curve      | 0.5                                       | Linear interpolation | 0       |  |  |
| No exotherm        | 0                                         | Linear interpolation | 0       |  |  |

| 0.1     | Long side chains that includes a weak bond that would deave a highly flammable molecule |
|---------|-----------------------------------------------------------------------------------------|
| 0.1     | Weakness (unstable, high energy group) that would cleave a highly flammable molecule    |
| 0.2     | Molecule vulnerable to cleaving and liberating a flammable molecule                     |
| 0.2     | Salts of highly flammable molecules (sCS) - propionate, valerate, olamine.              |
| 0.3     | Salts of flammable molecules (CS-C6) - maleate, glutarate, furoate, besylate.           |
| 0.4-0.6 | Salt of molecule with limited flammability (206) - salicylate, mesylate                 |
| 0.4-0.6 | Side chain with potential weakness to liberate a moderately flammable molecule          |
| 0.7-0.9 | Side chains or high energy groups causing no obvious structural weakness                |
| 0.9     | Salt of molecule with very limited flammability - succinate                             |
| 0.8-1   | Mole cule could dieave to form two stable molecules of limited flammability             |
| 1       | Molecule has short side chains and no obvious weaknesses                                |
| 1.5     | Tightly bound molecule with short side chains.                                          |
| 2       | Tightly bound molecule with no side chains.                                             |
|         | Propionate, C3H5O2-, from propionic acid, 8P 140°C                                      |
|         | Valerate, CSH9O2-, from valeric acid, BP186°C                                           |
|         | Furoate, from furoic acid (C5H4O3), BP230°C                                             |
|         | Mal eate, from maleic acid (C4H4O4), BP2O2°C                                            |
|         | Glutarate, from glutaric acid (C5H8O4), BP200°C                                         |
|         | Mesylate, methanesul fonic acid (CH35O3H), BP167°C                                      |
|         |                                                                                         |

#### IMS Guldance

| 0.25       | Minimum value                                                                                     |
|------------|---------------------------------------------------------------------------------------------------|
| 0.5        | London forces, melting point < 100°C, melting endotherm < 301/g                                   |
| 1          | Mainly London Forces with some polar bonding, melting point 100-120°C, melting endotherm 30-50J/g |
| 2          | Some polar bonding, melting point circa 150°C, melting endotherm circa 50-70J/g                   |
| 4          | Hydrogen bonding, melting point 180-200°C, melting endotherm circa 70-100i/g                      |
| 6          | Significant hydrogen bonding, melting point >200°C, melting endotherm > 1001/g                    |
| 10         | ionic bonding, melting point >300°C or no melting during DSC test                                 |
| 16         | Maximum value                                                                                     |
| As formula | Factor = ((Melt temp (°C) - 75)/50) + (Melt endotherm/50) - 0.3                                   |
|            | Maximum values if no melting                                                                      |

Polar bonding - Factor = 9 ionic bonding - Factor = 16 M5 Guidance

Salicylate, from salicylic acid (C7H6O3), 8P211°C H6O3S), 8P190°C 8O3), 8P222°C 8P170°C 8P23S°C, FP206°C

## Results to date for API predictions prior to test data



There are no 'false negatives' to date

| <b>Prediction Accuracy</b>                                 | Compound | Predicted MIE (mJ) | Test MIE (mJ)       |
|------------------------------------------------------------|----------|--------------------|---------------------|
| Correct prediction of 'material                            | AA       | 2 to 4             | 2 to 3              |
| of concern' <5mJ                                           | BB       | 1 to 3             | <3                  |
| False positives – predicted                                | CC       | 2 to 4             | 6 to 7              |
| 'material of concern' but not                              | DD       | 4 to 11            | 7 to 8              |
|                                                            | EE       | 35 to 43           | 35 to 40            |
|                                                            | FF       | 7 to 15            | 10 to 13            |
|                                                            | GG       | 5 to 9             | 16 to 19            |
| Correct prediction that NOT a 'material of concern' (≥5mJ) | HH       | 30 to 45           | 60 to 70            |
|                                                            | II       | 8 to 17            | 25 to 30            |
| &                                                          | JJ       | 7 to 28            | 10 to 13            |
| Prediction broadly correct                                 | KK       | 70 to 130          | 200 to 300          |
|                                                            | LL       | 15 to 37           | 15 to 18            |
|                                                            | MM       | 10 to 20           | 15 to 17            |
|                                                            | NN       | 10 to 17           | 6 to 22 (two tests) |
| Prediction excessively 'safe                               | 00       | 25 to 46           | 400 to 500          |
| side'                                                      | PP       | 8 to 12            | 100 to 200          |

# Issues with the model – particle size and the micronization anomaly



- Model works well for particles that are sized reduced to <75 microns for test.</li>
- Model breaks down at small particle sizes (micronized or similar) as test results do not change uniformly with particle size.
  - Hypothesis is that this is due to agglomeration.

| Compound | Test Result Unmicronized | Test Result Micronized |
|----------|--------------------------|------------------------|
| 1        | 8 to 10                  | 2 to 3                 |
| 2        | 25 to 30                 | 9 to 10                |
| 3        | 35 to 40                 | 60 to 70               |
| 4        | 5 to 10                  | 4 to 5                 |
| 5        | 200 to 300               | 200 to 300             |
| 6        | 7 to 8                   | 9 to 10                |
| 7        | 40 to 50                 | 60 to 70               |
| 8        | 4 to 5                   | 40 to 45               |
| 9        | 100 to 200               | 300 to 400             |
| 10       | 30 to 35                 | 100 to 200             |
| 11       | 3 to 4                   | 45 to 50               |

### Progress versus success criteria



### Well accepted by the business.

- Success Criteria:
  - Use <1g of material</li>
  - Not require any additional equipment
  - 'False positives' < 33% of the time</li>
  - 'False negatives' < 3% of the time</p>

 $\overline{\mathbf{V}}$ 

- ½ TGA available before but not routinely used
- ☑ Promising so far but small data set
- $\ensuremath{\square}$  Promising so far but small data set



# Dust Explosion Characteristics

Pmax Kst

#### Caveat



- Not as advanced as MIE prediction.
- Still one factor to work on,
  - Which may explain a phenomenon in our test data set.

### **Hypothesis**

#### Follows on from the MIE work...



- The dust explosion properties are dominated by the most readily flammable portion of the molecule.
  - Sometimes this is the whole molecule.
  - Sometimes this is a flammable fragment that has cleaved from the parent.
  - Example (data from test):

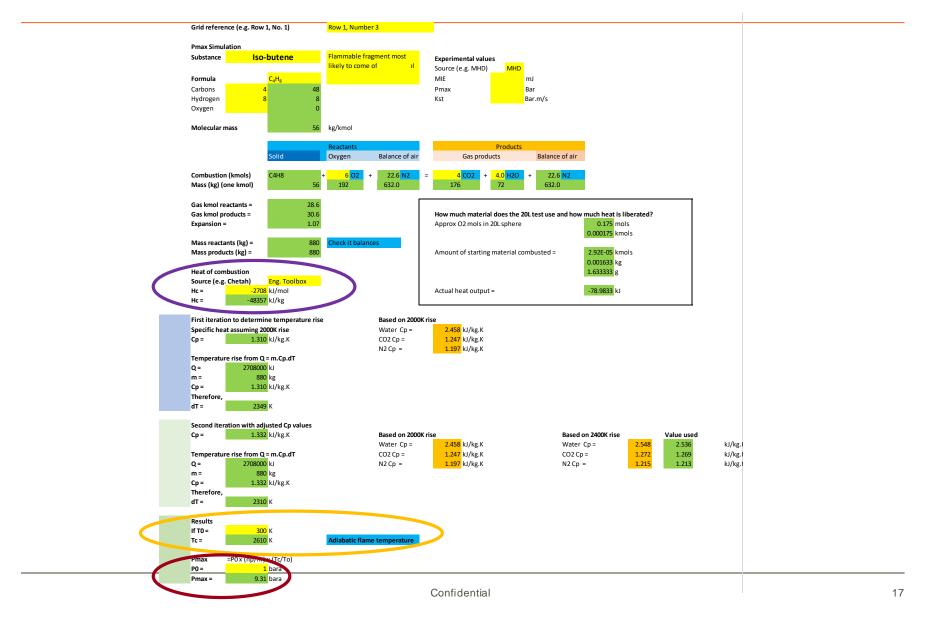
| Compound       | ompound MIE (mJ) |     | Kst (bar.m/s) |  |
|----------------|------------------|-----|---------------|--|
| XXX            | 80 to 90         | 8.8 | 153           |  |
| XXX.salicylate | 10 to 15         | 8.2 | 212           |  |
| Salicylic acid | 4 to 5           | 8   | 270           |  |

- Pmax estimated via thermodynamic combustion of the flammable parts,
  - Plus whole molecule as a safeguard.
- Kst as a pseudo rate based on MIE, % of molecule that burns, adiabatic flame temperature, heat of combustion and a dispersion factor TBD.

## **Maximum Explosion Pressure (Pmax)**



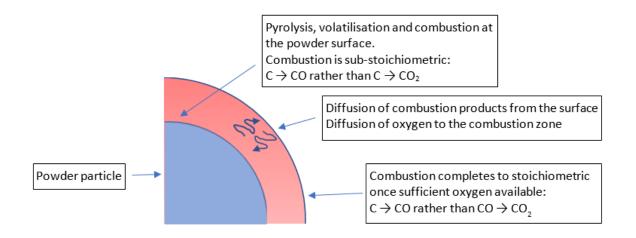
- This follows the published methodology developed by Michael Toth of Merck & Co.
- The difference is that it is based on the cleaved flammable part(s) of the molecule if TGA suggests a partial cleave rather than the whole molecule disintegrating.

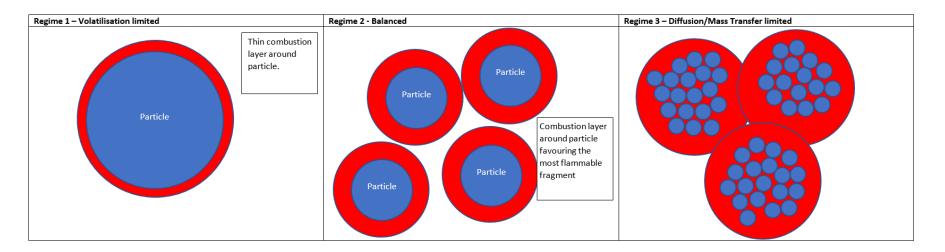

| Compound          | Test Pmax (bar) | Predicted Pmax (bar) |
|-------------------|-----------------|----------------------|
| YYY               | 9.3             | 8.8                  |
| Iso-butene cleave | N/A             | 9.3                  |

Heat of combustion from CHETAH or published data.

Michael Toth, et al; Partial inertion as basis of safety for pharmaceutical operations involving highly ignition sensitive po wders and modeling combustion properties as a function of oxygen concentration; Process Safety Progress; 2020;e12175

### **Example combustion calculation to estimate Pmax**




## **Kst Hypothesis**

#### Three regimes – Kst highest at Regime 2







#### Kst Model



- This is taken as a rate and is assumed to follow an Arrhenius type relationship:
- Kst =  $(M_o/M_i)^3$ .A.e<sup>(-E/RT)</sup>
- Where:
  - Mo = Gas mols post combustion
  - Mi = Gas mols pre combustion
  - A = Pre-exponential factor and is related to Minimum Ignition Energy (MIE) and the percentage of the molecule that burns
  - -E/R = Activation energy divided by the Universal Gas Constant and is related to the heat of combustion of volatile fragment(s)
  - T = Adiabatic flame temperature of the combusted fragment(s) (K)

#### **Factor Values at Present**

## All empirical and subject to change



- At present
- E/R Varies from -6,500 at a heat of combustion of ≤10,000kJ/kg linearly to -4,800 at a heat of combustion of ≥40,000kJ/kg
- $-A = A_F + A_I$
- $-A_F$  = Relates to the fragmentation of the molecule.
  - $-A_F = \%$  fragmentation x 20, up to a maximum value of 1,000 (50% fragmentation)
  - $A_1$  = Relates to the MIE in mJ.  $A_1$  = -205.4ln(MIE) +1600, down to a minimum of 500 (MIE 200mJ)
- These values are all best fit based on data for ST2 and ST3 compounds (API and late intermediates) from the GSK database of dust explosion test results

#### **Results to Date**

#### Predictions done before results available



Predicted Pmax >9.5 and/or Kst > 275 bar.m/s flagged as materials of potential concern for Pmax > 10 bar and/or Kst >300 bar.m/s (ST3).

Several prediction far in excess of test values:

| Prediction Quality                                              | Compound | Predicted<br>Pmax (bar) | Test Pmax<br>(bar) | Predicted Kst<br>(bar.m/s) | Test Kst<br>(bar.m/s) |
|-----------------------------------------------------------------|----------|-------------------------|--------------------|----------------------------|-----------------------|
| Material of concern                                             | QQ       | 8.8                     | 8.6                | <mark>316</mark>           | 309                   |
| (MoC) correctly flagged                                         | RR       | 8.8                     | 8.6                | 286                        | 319                   |
| False positive                                                  | SS       | <mark>9.6</mark>        | 7.8                | <mark>285</mark>           | 135                   |
|                                                                 | TT       | 9.1                     | 8.4                | <mark>277</mark>           | 185                   |
| Not MoC and prediction broadly correct                          | UU       | 8.2                     | 8.2                | 190                        | 172                   |
|                                                                 | VV       | 9.1                     | 9.0                | 272                        | 247                   |
|                                                                 | WW       | 8.3                     | 7.4                | 133                        | 140                   |
|                                                                 | XX       | 8.2                     | 7.8                | 224                        | 173                   |
| Prediction excessively<br>'safe side' but correct as<br>not MoC | YY       | <mark>9.1</mark>        | <mark>7.8</mark>   | <mark>219</mark>           | <mark>91</mark>       |
|                                                                 | ZZ       | 8.6                     | <mark>7.4</mark>   | 108                        | 90                    |

#### Missing Factor? Dispersion characteristic?



Can flow properties predict Regime 2 versus Regime 3?

- The model may be missing a factor that describes how well the powder disperses and whether reality is closer to Regime 3 than Regime 2.
- Models become:
- Kst = DF. $(M_0/M_i)^3$ .A. $e^{(-E/RT)}$ 
  - Where DF = Dispersion Factor
- Pmax = DF x Pmax<sub>(thermodynamic)</sub>

| Compound     | Flow<br>Properties | Pmax<br>predicted<br>Bar | Pmax Test<br>Bar | Kst<br>Predicted<br>Bar.m/s | Kst Test<br>Bar.m/s |
|--------------|--------------------|--------------------------|------------------|-----------------------------|---------------------|
| RR           | Easy flowing       | 8.8                      | 8.6              | 286                         | 320                 |
|              |                    |                          |                  |                             |                     |
| SS           | Cohesive           | 9.6                      | 7.8              | 285                         | 135                 |
| SS 25% blend | Easy flowing       | N/A                      | 8.1              | N/A                         | 219                 |

## Progress versus success criteria



### Well accepted by the business.

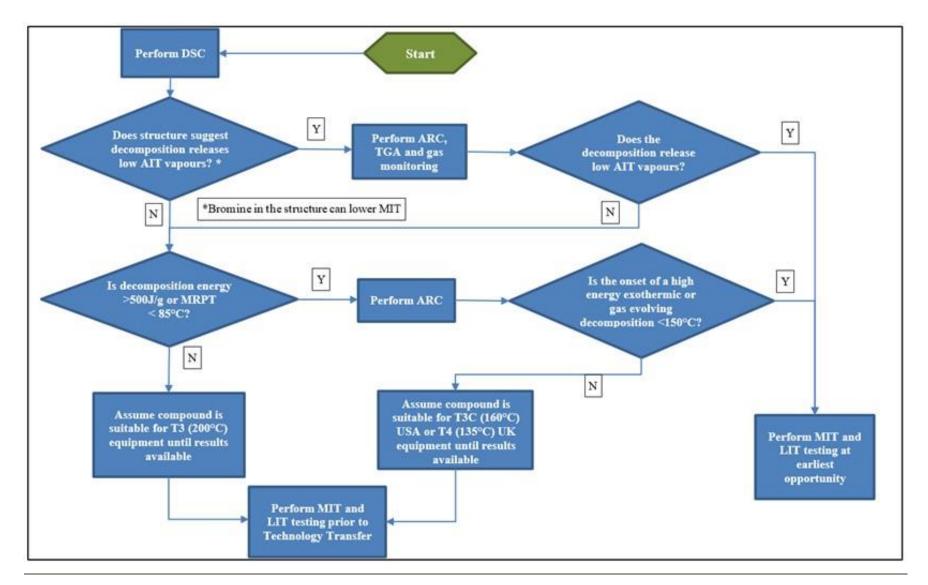
- Success Criteria:
  - Use <1g of material</li>
  - Not require any additional equipment
  - 'False positives' < 33% of the time</li>
  - 'False negatives' < 3% of the time</li>

- $\overline{\mathbf{V}}$
- ½ Required CHETAH licence
- ☑ Promising so far but small data set
- ☑ Promising so far but small data set



# Minimum and Layer Ignition Temperatures

MIT LIT


## MIT / LIT and equipment 'T' rating



- Equipment 'T' rating is the lower of LIT 75°C or 2/3rds of the MIT (in °C).
- Hazardous Area rated equipment generally has a 'T' rating although not all pilot plant equipment has an external zone.
- GSK has database of >1,000 MIT/LIT tests on API, intermediates, excipients and reagents.
- As part of the work on MIE and dust explosions we have assessed the cleavage pathways of >100 compounds (mainly API) at temperature.
- Empirically we have found that the following flow chart works and is 'safe side'.

## 'T' rating flowchart





## Progress versus success criteria



- Well accepted by the business.
- Success Criteria:
  - Use <1g of material</li>
  - Not require any additional equipment
  - 'False positives' < 33% of the time</li>
  - 'False negatives' < 3% of the time</li>

- ☑ Unless ARC testing required
- ☑ DSC & ARC available and routinely used
- ☑ Large data set
- ☑ Large data set, no false negatives



# Conclusion

#### **Conclusions**

## gsk

#### Testing is best if material quantities allow

- Versus Success Criteria:
  - Reliably predicting 'Materials of Concern'.
  - Meeting success criteria.
  - Working ongoing to establish 'dispersion factor' and reduce the number of 'false positives'.

#### – Use:

- Successfully used on 8 compounds to speed plant entry by doing risk assessment and set-up based on predicted data and starting once real data available.
- Successfully used on 8 compounds for which there were no data prior to campaign start and either MIE or full results now available.
- Further 6 compounds in plant or completed campaigns for which no test results are available.



# Acknowledgements

#### **Acknowledgements**

#### All GSK



- Roy Flanagan, Head of Process Safety
- Andrew Payne, Process Safety
- Chris Newlands, Technical Engineer Process Safety
- Richard Brook, Manager, Hazard Assessment
- Paul Evans, Process Safety (Rtd)
- Frank Dixon, Process Safety
- Jeff Sterbenz, Process Safety